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Scattering operators on Fock space: 11. Representations of 
the scattering operator generated by SL(2, R) 

W H Klink 
Department of Physics and  Astronomy, University of Iowa, Iowa City, IA 52242, USA 

Received 20 December 1985 

Abstract. A representation for unitary scattering operators acting on a symmetric Fock 
space and  invariant under  an  SO( N )  internal symmetry group is constructed. A group of 
transformations commuting with S O ( N )  is seen to be isomorphic to S L ( 2 , R ) ;  the rep- 
resentations of SL(2 ,R)  acting on the Fock space are  shown to come from the discrete 
series of representations of SL(2, W). These representations are  used to label the equivalent 
irreducible representations of SO( N), and  the partial wave amplitudes of the scattering 
operators are  shown to  be matrix elements of the discrete series of representations of 
SL(2, R). The  example of isospin internal symmetry and  the pion triplet is briefly discussed. 

1. Introduction 

To investigate strong interaction multiparticle phenomena from a scattering operator 
point of view, it is useful to begin with internal symmetries and see how a given 
representation of the internal symmetry group governs the structure of a general unitary 
invariant scattering operator. In this paper we continue the analysis begun in Klink 
(1985, hereafter referred to as I) ,  where a compact internal symmetry group K, with 
a representation acting on a space V of dimension N, was associated with the group 
U ( N ) .  

For internal symmetries whose representation space V accommodates a multiplet 
of bosons, the relevant many-particle space is the symmetric Fock space, consisting 
of the direct sum of all n-fold symmetric tensor products of V. Unlike the group K 
where the n-Cold tensor products are generally reducible, these n-fold symmetric tensor 
products are irreducible for U(N) .  In I it was shown that the symmetric Fock space 
S( V )  is isomorphic to a Hilbert space of functions on U( N) /U(  N - l ) ,  induced by 
the identity representation of U( N - 1). A unitary invariant scattering operator was 
then constructed by having the kernel of the operator act only on the double cosets 
of U(  N )  with respect to U( N - 1) and K.  

This gave a representation of unitary invariant partial wave amplitudes, 
K,( n, 7); n', ,q') ( I ,  equation (18)), where ,y is the irreducible representation of K, n( n') 
is the number of particles in the final (initial) state and ~ ( 7 ' )  is a multiplicity label 
distinguishing between equivalent representations x in the n( n') particle subspace. 
Now the kernels K D D ,  of the scattering operators (labelled by double cosets D, D ' )  
form an infinite parameter group, which we denote by G". G" is, however, too big to 
be useful for dealing with the multiplicity problem. We would like to find a finite 
parameter subgroup G of G" whose representations could be used to label the 
multiplicity 7 of equivalent representations of K. 
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To see how to construct such a group, we consider in this paper S O ( N )  internal 
symmetry groups, for which the decomposition of the representations of U(  N )  appear- 
ing in the Fock space into SO( N )  irreducibles is well known. We will show that related 
to the U( N - l)'U""SO( N )  double coset decomposition is a finite parameter subgroup 
of G" that is isomorphic to SL(2, R), and further, that the discrete series of representa- 
tions of SL(2, R) completely label the multiplicity of SO( N )  representations in the 
Fock space. 

Actually, the computations will not be carried out on Fock space or on the Hilbert 
space over the complex sphere introduced in I ,  but rather on a Gaussian Hilbert space. 
There spaces are introduced in § 3 and are used to construct operators that commute 
with SO( N )  and form a Lie algebra of SL(2, R). In  § 2 the ideas introduced in I are 
reviewed and the reduction of U( N )  to SO( N )  representations is given. 

The discrete series of representations of SL(2,R) can be used not only to label 
equivalent SO( N )  representations, but also to generate partial wave amplitudes of 
scattering operators, indexed by SL(2, R) elements, that are unitary and invariant with 
respect to SO( N ) .  The unitarity of these partial wave amplitudes is a consequence of 
the unitarity of the discrete series of representations of S L ( 2 , R ) .  Such partial wave 
amplitudes are, of course, not the most general unitary invariant partial wave ampli- 
tudes, since these arise from the infinite parameter group G". They may, however, be 
useful in phenomenological analyses, such as arise in the example discussed in § 4, of 
an isospin internal symmetry SU(2) and the pion triplet. 

2. Connecting U(N) and S O ( N )  representations 

As in I we begin with a compact group K and representation space V of dimension 
N. The symmetric Fock space S ( V )  is formed by taking the direct sum of n-fold 
symmetric tensor products of V: 

cc 

S ( V ) =  1 OV" v, = (VO . . . 0 V)sym. 
n =o 

Now, as discussed in I ,  if V is a complex vector space, it also is a representation 
space for the fundamental representation of U( N ) .  For U( N )  the n-fold symmetric 
tensor space is irreducible and given (in Gel'fand notation) by ( n o . .  . 0). However, 
for K the n-fold symmetric tensor space is generally reducible. In particular, if 
K = SO( N ) ,  and acts on V as a subgroup of U( N ) ,  the decomposition of the n-fold 
symmetric tensor space is given by 

N I  2 - 
n even 

z N N j  2 
? n o .  . . o T = f n o .  . . 0 ? + ( n - 2 , 0 . .  . o)+ . . . + ( o . .  .o)  

? n o  . . .  O)\=[no . . .  05+(n-2 ,0  ... o)+ . . .+ (  10.. . o f  
N ;<iVA-- 1) +(N-- 1) $( NA- 1) 

r f 

n odd. 
(2) 

This shows that no irreducible representation of S O ( N )  appears more than once in a 
given n-particle subspace of the full Fock space. Or, put differently, the multiplicity 
of SO( N )  irreducible representations in S (  V) is completely specified by n, the number 
of particles. 

For example, if K is the isospin group SU(2) and V the representation space 
associated with a triplet of pions, then the group action in V can be chosen to be 
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SO(3). The representations of SO(3) contained in the U(3) representation (nO0) are 
given by 

(nOO)+ I = n, n - 2 , .  . . , O  

(nOO)+ I = n, n - 2 , .  . . , 1 

n even 

n odd 

where I is the isospin. This decomposition can be written in another way which will 
be important in the coming sections, namely a given I occurs in the n = I ,  I + 2 , .  . . , 
subspaces of S (  V ) ;  note that even (odd) values of n occur only with even (odd) values 
of I. We see that towers of particles are formed which will be associated with the 
discrete series of representations of SL(2, R). 

More generally, if I denotes the ( 1 0 . .  . 0) representation of S O ( N )  (Barut and 
Raczka 1977), then the towers become n = 1, 1+2,  I +4 , .  . . , again with no mixing 
between even and odd values. The SL(2,R) raising and lowering operators which 
commute with S O ( N )  have the property that they change n by *2, while leaving 1 
unchanged. 

In I S ( V )  was shown to be isomorphic to a Hilbert space defined on the 
homogeneous space U ( N ) / U ( N - l ) ,  and the scattering operator then acted as a 
unitary operator on the orbits of U( N ) / U (  N - 1 )  generated by the representation V 
of K. As discussed in the introduction, it is not clear how to compute the action of 
SL(2, R) on the Hilbert space over U( N ) / U (  N - 1 ) .  We now introduce another Hilbert 
space also isomorphic to S (  V) in which the action of SL(2, R) is readily seen, namely 
a Hilbert space with Gaussian measure. 

Let e, be an orthonormal basis in V, which then generates a basis e,, 0 . . . 0 e,,, in 
the symmetric n-fold tensor product space. Associated with Vis its dual V*, consisting 
of linear functionals, which can be associated with components U, of elements in V 
relative to the basis {e,}. Then the natural basis in the n-fold tensor product space 
corresponds, in the space of functions over V*, to the polynomials U,, . . . u , , ~ ;  more 
generally, arbitrary elements in n particle subspaces of S (  V )  are associated with degree 
n polynomials over U,. 

These polynomials are elements of a Hilbert space with Gaussian measure, 
L2( V*, pG), in which the Gaussian measure d p G  satisfies 

dFG= 1 J "* 
r (3) 

dpGexP[-i M u ,  ~ ) l = e x ~ ( / I w 1 1 ~ / 4 )  U, W E  v. 
V* 

It will be given more concretely in the following paragraph. Through the association 
between basis elements in §( V )  and polynomials in L2( V*, pG) ,  it is not hard to show 
that S (  V) and L2( V*, p G )  are isomorphic (see, for example, Hida 1980, ch 5). 

Since the main groups of interest in this paper are the S O ( N )  groups, we now 
restrict our attention to the Hilbert space with Gaussian measure relevant to these 
groups. The fundamental representation of S O ( N )  is N dimensional and can be 
realised on a real vector space of N dimensions, with a dual space RN. Then the 
Gaussian measure on the dual space R N  becomes 
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and it is easily checked that 

dpG = exp[ -i Re(u, w ) ]  = rdx,  exp( -Xxf) exp( -iXx,y,) J 
= e x p ( - ~ y j / 4 )  

= exP(-llYll2/4) Y E  v. ( 5 )  

Let x = x I  . . . xN and d p G  = r dx, exp(-Zxf) = d x  exp( -x2). Then elements of 
L * ( R ~ ,  pG) satisfy 

and it is seen that polynomials are elements of L2( V*, pG);  in particular, products of 
Hermite polynomials h n , ( x , )  . . . h,, ( x N )  form an orthogonal basis in L2( V*, pG), so 
we define 

and obtain 

N rv Here X,=, n, = n, E ; = ,  n: = n'. 
The action of R E S O ( N )  on L2(RN,  pG) is inherited from the action on §( V ) :  

( r R f ) ( x )  = f ( R - ' x )  f E  L 2 ( R N ,  WG).  (8) 

We want to find a group with representation operators that act on L 2 ( R N , p G )  and 
commute with r R ;  if the group action is unitary the scattering operator can be chosen 
as one of the representation operators, and hence is related to some group element. 

Now as pointed out in the beginning of this section, the multiplicity of S O ( N )  
representations in §( V )  is labelled by n, the particle number. Therefore, the only 
action of a group commuting with rR can be to change n. In the next section we will 
show that the number operator is related to an element of the Lie algebra of SL(2, R) 
(or SU(1, l ) ) ,  and the other operators in the Lie algebra raise or lower the particle 
number. To prepare for this analysis, we conclude this section by introducing the 
usual position and momentum operators of non-relativistic quantum mechanics acting 
on L 2 ( R N )  and find the map that sends these operators from L 2 ( R N )  to L2(RN,  pG).  

Letting 4 E L 2 ( R " )  and defining the map A from L 2 ( R N )  by 

it is easily seen that A is unitary (11A4)) = 11411). 
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Let qm and pm be position and momentum operators satisfying 

( q m 4  ) ( x  ) = x m 6  ( x 1 

and are self-adjoint in L2(RN, pG).  
Now define 

N 

H , = t  C (PmPm+qmqm) 
m = l  

the N-dimensional harmonic oscillator Hamiltonian, along with 
N 

HI = -+ C (pmpm - q m q m )  
m = l  

N 

H , = - +  1 (pmqm+qmPm) 
? = I  

3569 

(10) 

where use has been made ofthe commutator relationship [ q m ,  pm] = i&,,. The operators 
H,,, H I ,  H2 form a Lie algebra, the Lie algebra of SL(2, R). 

[ H I ,  H,] = -2iH,, [H,, Ho]=2iHl  [H,, H,]=2iHz.  (13) 
Further, the Casimir invariant 

is not a multiple of the identity, indicating that the SL(2,R) representation on 
L2(RN, pG)  is reducible. However, all three operators are rotationally invariant, so it 
is clear that the action of SL(2, R) commutes with SO( N).  

C =  H : +  H:- H: (14) 

3. sy2, R) on L2(R", p c )  

The group SL(2, R) consists of all real 2 x 2 determinant 1 matrices. A general element 
can be written as 

a = ( : : :  :I) la/ = 1. 

A basis for the Lie algebra of SL(2, R) can be chosen as 
cos 8 -sin 8 
sin 8 cos 0 xo = (: -A) e"o0 = 

X I = ( '  0 -1 O )  er i f=("  0 e-' O )  
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Corresponding to each of these Lie algebra elements are self-adjoint operators p(xl )  
which form a representation of the Lie algebra of SL(2,R) on L2(RN,pG). These 
operators are obtained via the unitary map A carrying elements L 2 ( R N )  to L2(RN,  pG) :  

( xo) = A H ~ A - ~  = x .  v - fv2 + f N 

p ( ~ I )  = A H ~ A - ~  = fv2 + x . x - x v - ; N  (16) 

p(x2) = AH2A-l = i(x + V - x * x )  + f i  N. 

Further the eigenfunctions of p(xo) are the Hermite polynomial basis elements of 
L2(RN,  pG)  defined in the previous section (equation (6) ) :  

N 

P(x,)({nl})=f(2x' '-"'fN) n cJhfll(X!) 
J = 1  

N 

= f  ( 2 x m h A , , , ( x m ) - h ~ , , , ( x m ) )  II c,h,,(x,)+fNl{n,)) 
m = l  J f m  

N 

= t  C 2n,,,hnm,(xm) II c,h,,(X,)+fNI{n,)) 
m = l  J f m  

Here use has been made of the Hermite differential equation, h: -2xhA +2nhn = 0; cJ 
are the normalisation constants given in equation (6). p(xo) thus has the harmonic 
oscillator spectrum, n + N / 2 ,  n = 0,  1,2,  . . . , as expected. Also, the Lie algebra element 
xo has been associated with Ha, because its spectrum is discrete, in contrast to the 
operators p ( x l )  and p(xJ which have continuous spectra (see Sally 1967, Lange 1975). 
The dimension factor N appears in each of the p(x l )  and is needed to preserve the 
Lie algebra structure of SL(2, R). 

Since SL(2, R) commutes with the action of SO( N )  on L2(RN,  pG) ,  but is reducible 
on this space, we must find a space on which the action of SL(2, R) is irreducible. 
Now the H,  operators, equation (12), are rotationally invariant, so by passing from 
Cartesian to polar coordinates, and then transforming away the angular coordinates, 
a representation for SL(2, R) Lie algebra basis elements in terms of a radial variable 
only can be found. These transformations are carried out in the appendix. The 
transformation from L2(RN)  to L2(R+,  V,) is given by equation (A4) and since the 
Casimir operator in these radial variables (denoted fit) is now a multiple of the identity 
(equation (A7)ff), it follows that L2(R+, V,) carries an irreducible representation of 
the SL(2, R) Lie algebra. 

The irreducible representation carried by L2(R+, V,) c?mes from tke discrete positive 
series of representations of SL(2, R). To see this define H ,  = fi, * iH2,  with commuta- 
tion relations 

[A,, f iO]= + 2 f i * .  (18) 
Since go has a spectrum inherited from th,e harmonic oscillator Hamiltonian, namely 
n + N / 2 ,  n = 0 , 1 , 2 , .  . . , it follows that H ,  raise or lower n by 2. However in 0 2 
(equation (2)ff) we showed that n can be written as n = I ,  l + 2 ,  1 + 4 , .  . . , which is 
precisely the discrete positive series of representations of SL(2, R) in a basis in which 
p(xa) is diagonal (i.e. the generator of the compact subgroup of SL(2, R) is diagonal). 

Once the connection with the discrete series has been established, it is a straightfor- 
ward matter to write the matrix elements of the scattering operator in a partial-wave 
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basis-that is, a basis in which the SO( N )  irreducible labels are diagonal. This space 
is obtained from L2(RN,  pG)  by transforming away the angular variables, as was done 
in going from L*(R'") to L*(R+, v,). The unitary transformation from L ' ( [ w ~ ,  pG)  to 
the partial-wave space L*(R+, pG,  V , )  is also given in the appendix (equation (A8)). 
As was the case with L2(R+, V I ) ,  the Casimir operator on L*(Iw+, pG, V,) is a multiple 
of the identity. The matrix element for a transition from a partial-wave state labelled 
by 1 with n' particles to a state with n particles is given by 

( n 4  k}l SI n ' 4  k l )  = ( n w 4  U, I n'l{ k ) )  g E SL(2, R) (19) 

where U, is a unitary representation operator of the discrete positive series labelled 
by 1, given by Kashiwara and Vergne (1978). Thus 1 labels the irreducible representation 
of SL(2, R) and SO( N ) .  { k }  denotes the set of other basis labels needed to specify a 
state in the irreducible representation space V, of SO( N)  (Vilenkin 1968). For isospin 
discussed in the next section { k }  is the third component of isospin while 1 is the isospin 
label itself. 

The basis states of the matrix element (19) can be thought of as elements of 
L2(R+,  pG, V,); however, any other space unitarily equivalent is also suitable for 
computing the matrix element. Perhaps the most transparent space is the space in 
which the operator p ( x , )  is diagonal. The group is then not SL(2, R), but a conjugate 
group SU(1, l ) ,  in which the compact group element can be written 

('d" eoio).  

The space on which the compact group elements are represented by diagonal operators 
is the space of functions holomorphic on the unit disc (Lange 1975). Then the 
eigenfunctions of p(x , )  are simply z". The actual matrix elements of SU(1, 1) are given 
in Vilenkin (1968, p 311ff), and will not be discussed further here. 

Matrix elements of the scattering operator in a particle number basis, such as the 
Hermite polynomial basis given in equation (6), can be obtained by transforming from 
a Ill{ k } )  basis to an I{ n i } )  basis with Clebsch-Gordan coefficients of the SO( N )  group. 
A simple method for doing these calculations is given in a succeeding paper in this series. 

4. An example-isospin and pion triplets 

The simplest example that illustrates the ideas presented in the previous sections makes 
use of isospin symmetry, in which the internal symmetry group is SU(2) and the 
representation space V containing a triplet of pions comes from the I = 1 representation 
of SU(2). However, this representation is also the fundamental representation of 
S0(3) ,  and so fits into the general framework discussed in the previous sections. 

The many-particle Fock space of the pions, S(  V), is, as discussed in 0 2, isomorphic 
to L2(R3, pG). A basis in L2(R3,  pG) is given by In,, n o ,  n-), the number of T+, T O  

and T -  pions, respectively. The partial-wave amplitude for the transition for n' to n 
pions in the isospin I state is given by 
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where U,  is the unitary operator corresponding to the element 

) cosh t sinh t ( sinh t cosh t 

of SU(1, l ) ,  8 and 8' are parameters of the compact subgroup of S U ( 1 , l )  and PA,,( t )  
is the SU( 1, 1) matrix element discussed by Vilenkin (1968, p 309ff). The decomposition 
of gESU(1 ,  1) used in (20) corresponds to the Euler angle decomposition for SU(2). 

Since the dependence of the matrix element on the angles 8, 8' is given explicitly, 
the partial-wave isospin amplitude is a function of the remaining variable, t E R'. 

There are several ways that one might fix these parameters in the absence of an  
underlying dynamical theory. Experimental data or other models might indicate that 
multiparticle resonances dominate certain channels. In our isospin example, suppose 
that the 2 + 4 reaction proceeds primarily through the I = 2 channel, with the I = 0 
channel suppressed. Then the matrix element Pi,;'( t )  should be small, which restricts 
the values of t to be near the zeros of P:,;'((t). In this way phenomenological input 
can be used to help fix the value of t and once t has been fixed the partial-wave 
amplitudes are completely determined. 

Finally, to compute the n'+ n matrix element, in which pions x1 + . . . + xn,  react 
to produce pions x ,  + . . . + T,, we write 

(TI . . . x, IS /x ,  . . . x, ) 

where ( T ,  . . . xnlZ, I , )  is a SO(3) Clebsch-Gordan coefficient in which n I = 1 particles 
with third component of isospin x ,  . . . x, are symmetrically coupled together to 
produce an  isospin I and component I ,  state. These coefficients are discussed by 
Klink (1983). 

5. Conclusion 

We have shown that for S O ( N )  internal symmetry groups, in which the irreducible 
N-dimensional representation space of SO( N )  generates a symmetric Fock space, that 
a general unitary invariant scattering operator is related to the positive discrete series 
of representations of SL(2, R). In  particular, unitary invariant partial-wave amplitudes 
of S O ( N )  internal symmetry groups can be written as SL(2, R) matrix elements, in 
which the irreducible representation of SL(2, R) is given by an irreducible representation 
of SO( N ) ,  while the basis labels are the number of particles in the initial and  final states. 

For example, isospin symmetry generated by SU(2), in which the I = 1 representa- 
tion of SU(2) contains a triplet of pions, can be thought of as an  SO(3) internal 
symmetry with the three-dimensional representation generating the Fock space. Then 
isospin partial-wave amplitudes are given as matrix elements of SL(2, R) (which are 
well known special functions) in which the discrete series of representations of SL(2, R) 
are labelled by isospin and the basis labels are the number of pions in the initial and 
final states. Such partial-wave amplitudes are not, of course, the most general isospin 
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partial-wave amplitudes, as they come from a finite parameter subgroup G = SL(2, R) 
of the full infinite parameter group of transformations that commute with SU(2). 

The notion of a group G whose action on a Hilbert space commutes with the action 
of a given compact group K is closely related to work by Moshinsky, Quesne and 
co-workers (Moshinsky and  Quesne 1970, 1971, Deenen and Quesne 1982, Moshinsky 
1984, Quesne 1985), who call such pairs of groups complementary groups, and Howe 
(1985), who calls such pairs of groups 'dual pairs'. Their work makes use of the fact 
that SO( N)  and  SL(2, R) are complementary or  dual, and that a given SO( N )  irreduc- 
ible representation carries a unique representation of the discrete series of SL(2, R). 
Complementarity or  duality ideas have also been used to analyse the branching rules 
and matrix elements of the infinite-dimensional unitary representations of the real 
symplectic groups through the association with the finite-dimensional irreducible 
representations of SO( N )  (Rowe et a l  1985). 

Howe has listed various sets of dual pairs of groups. This list unfortunately does 
not include the compact internal symmetry groups of most physical interest. For 
example, a multiplet of eight bosons is generated by the eight-dimensional representa- 
tion of SU(3)Ra,our. The operators of SU(3) acting on this eight-dimensional representa- 
tion form a subgroup of SO(8). Therefore, the group dual or  complementary to this 
subgroup of SO(8) will contain SL(2,R),  but also other elements. How to find such 
a group will be discussed in another paper. 

Of most physical interest is finding groups dual or complementary to spacetime 
groups such as the PoincarC group. In this case the underlying Fock space is generated 
by an  infinite-dimensional irreducible representation and so does not fit in any natural 
way to dual or complementary groups previously given. A way of finding elements of 
the dual pairs by using group contraction ideas is given in Klink (1987). 
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Appendix 

We want transformations between L 2 ( R " )  and L2(Rt, VI), L' (R" ,  pG)  and 
L2(R+,  p G ,  V,), and finally between L2(Rt ,  V I )  and L2(R', pG, V I ) ,  because on these 
latter spaces SL(2, R) acts irreducibly. 

To obtain the map between L 2 ( R N )  and L2(R', V,), we make a change from Cartesian 
to spherical coordinates, x = rR, where R are angular coordinates, given, for example, 
by Vilenkin (1968, p 435 or  489). R denotes any choice of spherical coordinates. The 
measure then transforms as 

N fl dx, = r N - '  d r  d R  
, = I  

where d R  is normalised so that 

d R =  1. 
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Let YJ{ k}(n) be generalised spherical harmonics (Gegenbauer polynomials) satisfying 

d n  Yzk) (R)  Y?{k,)(Q) 
SO( N ) / S O (  N - 1 ) 

= a l l ' a { k ) , ( k ' ) .  (A2) 

Here 1 is the irreducible representation label of SO( N )  (it is (10 . . . 0) in Gel'fand 
notation, with N / 2  - 1 zeros if N is even and f( N - 1) - 1 zeros if N is odd). { k }  
stands for the collective indices needed to further specify the generalised spherical 
harmonics. 

Let L2(R+,  V,) be the Hilbert space in which elements 6 E L2(Rf, V,) have norm 
r 

and define the unitary map from L2(RN) to L2(Rf, V I )  by 

(A4J)(r, 1, { k } )  = rN-l d r  

YXk}(.n)4J(rfl) 4 E L2(RN). (A41 

The inverse map is given by 

In L2(R+, V,), the various operators become 

a2 N - i  a i ( l + N - 2 )  
ar2 r ar r2 

-- - +- -- 

A ( x .  V)A-'  = ra/ar 

A ( x .  x ) K 1  = r2 

and the Lie algebra elements are 

iN a 
fi2=AH2A-'=-+ir- .  

2 ar 

Most significantly, the Casimir operator 2 = A: + A: - = 2 N - ( N/2)2 - I ( I  + 
N - 2 ) ,  is a multiple of the identity, so that on L2(R+, V I ) ,  SL(2, R) acts irreducibly. 
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Similarly, a unitary map ,AG from L 2 ( R N , p G )  to the 'partial-wave' space 
L2(R+,  p G ,  V I )  can be defined as 

= 116112* 
The operators defining the Lie algebra elements become 

with Lie algebra elements 

b(x2)=-+i r - - r 2  
i N  2 ( a: ) 

and a Casimir operator which is a multiple of the identity. 
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